About

I am currently an undergraduate student studying Mechanical Engineering at Imperial College London. While I'm Indian, I can't really say that I feel like I'm from anywhere in particular. I'm lucky to have grown up in Oman, Libya, Brunei and Qatar, all of which I consider home. Have fun exploring the map below to find the countries I've lived in and the ones I've visited.

I made this website as an expanded 'resume', mainly to highlight some of my experiences, skills and the interesting projects that I have been involved with, both course-related and personal. Aside from these, I also like to spend my spare time playing tennis, cooking and drawing, some of which you can find here.


Note: This website is brand new (not any more) and there may be a few errors and twitches. I'm working on fixing these and I'll try updating the page with new information. Any suggestions would be highly appreciated and please feel free to drop me a message using the contact section at the bottom of this page.

Uni Projects

Major projects I've completed during my mechanical engineering degree.
Render 1 of eBike.
Render 2 of eBike.
Render 3 of eBike.
Render 4 of eBike.
Render 5 of eBike dropouts.
Render 6 of eBike dropouts.
eBike dimensions layout.
Materials selection of eBike.
FE Analysis of eBike frame.
Strain gauge welding to eBike.
Photo of rear wheel and disc brake.
Test setup of eBike.
Strain gauge locations on frame.
Strain gauge readings post-testing.
Complete render of eBike.

E-Bike Frame

ME3 Design Project, Sep 2020 - Jun 2021

Worked with a group of third year mechanical engineering students to design, make, and test an urban electric bike from the ground up. Was specifically responsible for the engineering design, validation, manufacturing, and testing of the frame in a 5-member subgroup.

Read more

The bespoke geometry is designed around human anthropometrics under urban commuting conditions. In the most basic form, the frame is dual triangular in structure with silver brazed steel tubing. The cold-drawn, low-carbon Omnicom tubes provide high tensile strength, fatigue resistance and transition temperature. Each tube is butted for added thermal resistance near braze joints while saving material weight elsewhere.

To be compatible with disc brake callipers while having a chain-tensioning mechanism, custom sliding rear dropouts were designed. The three-piece design allows the entire rear wheel assembly to move horizontally without conflicting with other parts. Furthermore, motor and battery integrations were achieved through a square-sectioned seat tube and downtube for increased easier manufacturing.

Extensive Finite Elements analysis and incremental load tests using strain gauges were used to iterate and validate the design.

Mine Rescue Buggy

ME3 Embedded C for Microcontrollers Project, Mar 2021

As part of the final project of the Embedded-C for Microcontrollers module, we developed an autonomous mine rescue robot. The buggy can navigate a conceptual mine using a set of instructions coded in coloured cards and return to its starting position – simulating a scenario of determining the location of trapped miners.

Enjoy exploring the set of slides which explain the key functionalities and features of the buggy. Slides 4 onwards have calibration demos before a full demo run on the final slide.

Read more

Hardware: PIC18F67K40 microchip, Clicker-2 PCB, Tricolour LED, TCS3471 Colour Light-to-digital convertor, 3.7V 2000mA LiPo battery, DRV833RTY differential motor drivers.

Six core functions: movement, colour-detection, lighting, memory, calibration, and a set of fail-safes.

Project Members:

Functionality overview of buggy.
Colour reading method of buggy.
Colour differentiation logic.
Mobula Ray render 1
Mobula Ray render 2
Mobula Ray render 3
Mobula Ray render 4
Mobula Ray render 5
Mobula Ray engineering drawing 1
Mobula Ray engineering drawing 2
Mobula Ray group photo

Mobula Ray

ME2 Design Week Project, Feb 2020

Mobula ray is a personal underwater propulsion device rated for a depth of 15m. Powered by a dual-motor drive train and lithium-ion batteries, it is designed to have a battery life of 2hrs for an average speed of 2 kph.

I worked with a highly talented team to complete the entire design process in one week, from the initial idea to the final engineering delivery. See our final pitching poster below.



View Poster

2D Heat Diffusion Model

ME2 Computing Project, Feb 2020

Worked as a pair to perform a heat transfer analysis of a hot long rectangular rod being quenched in a cold fluid. Using python, we modelled the temperature distribution through the rod in the x - y directions, as it changes with time.

Read more

A mixed composition of brick and steel (AISI 1010) was chosen for the rod, although this could be modified to fit any composition. The rod was long enough that the heat transfer along the longest length could be neglected, hence was modelled in two space dimensions, and time.

The location and area of the secondary material was chosen to be a small rectangle, slightly offset from the centre, however, could easily be adjusted to model different problems.

We assumed each section of the rod to have uniform density, uniform specific heat, and no internal heat generation. Overall, the model was described by a 3rd order parabolic partial derivative equation.

Project Members:

View Report
Sonic render 1.
Sonic render 2.
Sonic render 3.
Sonic render 4.
Sonic render 5.
Sonic engineering drawing 1.
Sonic post-manufacture 1.
Sonic post-manufacture 2.
Sonic and me.

SONIC

ME2 Autumn Term Project, Oct - Dec 2019

As part of a 5-member team, we designed, manufactured and tested a miniature motorised car to race against 30 other teams in the cohort. Sonic is an ultra light, rear-wheel-drive car featuring an all plastic spur gear drive transmission. Design elements were carefully considered to maximise the ease of manufacturing, reduce the race completion time and many other criteria. Find out more about the complete design and manufacturing journey down below.



Project Members:

Read Design Report

Lift Door Transmission

ME1 Drive Transmission Project, Jan - Mar 2019

An individual project to design a drive transmission for a lift door, including the complete CAD assembly and engineering drawings.

The design features a two-step speed increase and converts rotary motor motion to double-acting linear motion.

View Gateway Presentation
Lif Door render 1
Lift Door render 2
Lift Door render 3

Side Projects

Projects I've been part of, in my spare time or in competitions.

Effect of Article Headlines on User Clickrate - a Data Analysis

The Data Open Europe Datathon by Citadel, Nov 2021

Selected to complete in Citadel's 2021 week-long Europe Regional Datathon. The problem statement was to discover and analyze patterns related to online user behavior for practical or scientific purposes using the Upworthy Research Archive dataset.

Read more

As a group of 4 Imperial and Cambridge students, we focused on identifying the key parameters in online articles which affect user clickrates before the article is read. More specifically, we analysed the effect of images, headline sentiment, and headline topics on user behaviour.

Read Report
Figure 0
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Rover Deployment Full assembly Render
Winch Render 1
Winch Render 2
Winch Render 3

Lunar Rover Deployment

Making for the Moon Hackathon hosted by SpaceBit and BAE Systems, Feb 2021

Participated in 2021's Making for the Moon Hackathon with a group of five inter-university and cross-disciplinary students. The challenge was to design a solution to deploy SpaceBit's Asagumo rover from a height of 1m on the moon. Our proposed solution went back to the basics and relied on a simple winch and hook mechanism to both deploy and retrieve the rover. I was responsible for designing the mechanical actuation system, CAD, and rendering.

Read more

The actuation subsystem houses a 1W DC motor, a 1:30 Planetary reduction gearbox, the spool-shaft assembly and the control system for motor control and sensors. Additionally, the unit was carefully designed to meet Asagumo rover’s specifications and Astrobotic Tech's Peregrine lunar lander's payload dimension / weight specifications.

The slotted and sealed casing design also featured methods of minimising loads: sine-vibrational, random vibrational, acoustic and shock. The casing and internal components were designed for a nominal temperature range of -120°C to 100°C.

The grasping subsystem featured a self-orientating magnetic hook and clamp mechanism for attachment and detachment. This allows for both deployment and recovery of the rover.

BiSpace

Design Project, Oct 2020 - Dec 2020

Designed and prototyped a compact bike storage, focusing on increased functionality and aesthetics compared to existing market solutions.

Bispace was designed by a group of four Imperial mechanical engineering students. A prototype made of MDF was also developed as a proof of concept. I was responsible for the overall design, CAD, rendering and core website (discontinued).

Read more

General Design: 3-part design constituting of a beech platform, ABS centre piece and ABS side panels. The wooden platform provides a low CG for added lateral stability has an inbuilt back plate to act as the rear wheel pivot for effortless mounting. The centrepiece has an integrated wheel slot to avoid slippage and the material choice allows for customer preference colouring. The side panels feature locking slot pins and auto-retracting tension hooks for added mounting security. Additionally, the outward tapering top maximises compatibility of varying bike frame geometries.

The stand is compatible with 95% of bikes of varying frame dimensions and wheel sizes - based off testing and analysis of bikes in London.

BiSpace Render 1
BiSpace Render 3
BiSpace Render 4
BiSpace Render 5
BiSpace Render 6
BiSpace Render 7
Screenshot of blinking detector code

Object Detection App

Summer Project, Aug 2020

Work in progress! How cool would it be for everyone to have a car distance alert system and a sign-board reader while driving without the need of any inbuilt sensors? This gave me the idea of making an app which would utilise the phone's camera to perform these tasks. The basic concept relies on deep learning to detect the exact model of the car in front. Based on the screen real-estate taken up by the car, the app could output an estimated distance.

Read more

Knowing nothing about object detection and neural networks previously, learning more about these was a good place to start. So far, using OpenCV on Python, I've made a few basic programs which receive real-time video feeds. These include a basic motion detector, road lane-detector and a generic frontal face detector.

The next step is learning about mobile application development, and I'll try to keep this page updated with any new progress.

This Website!

Summer Project, Jul 2020

I'll be honest, stuck inside during the lockdown was making me think of things to do everyday. So alongside my OpenCV journey in python, I thought that it was the perfect time to learn a bit of web-development with HTML, CSS and JavaScript.

It turned out to be a pretty fun process and this website served as a playground to test out the new things I learnt.

View Git Repository
Screenshot of html code
CheckApp Render

CheckApp

Code2Care Hackathon hosted by Imperial Business School, Jul 2020

As a group of four, second-year mechanical engineering students, we participated in the annual five-day hackathon hosted by Imperial College Business School. This year's competition involved finding a sustainable health-tech solution to tackle the global non-communicable disease epidemic.

We proposed an app to improve medical data collection and accessibility, which would, in turn, allow for more informed medical and lifestyle decisions for both users and healthcare providers.

Read more

Currently, healthcare systems are out of date and there exists an information imbalance between patients and doctors, leading to less accurate advice. With an improved database of information and a deep learning model that considers family medical history, we can provide personalized assessments of a user’s health risks, reducing the strain on healthcare systems.

Custom PC Build

Summer Project, Jun 2020

I finally got around to doing something I've always wanted to do, build a computer. After doing a fair amount of research and digging, I put together a parts list (see below) that was compatible with each other and that fit my budget. Since building it, I've tweaked a couple of things, such as overclocking the graphics card, CPU and the RAM.

Overall, I'd say I am very happy with the build and it definitely inspired a computing-themed summer.

View Specs
CPU:
AMD Ryzen 5 3600 3.6 GHz
CPU Cooler:
AMD Wraith SPIRE RGB
Motherboard:
MSI B450M MORTAR MAX Micro ATX
Case:
NZXT H510
Case Fans:
2x NZXT Aer F120mm
RAM:
Corsair Vengeance RGB Pro 16 GB
Storage:
Western Digital Blue 500 GB 2.5" SSD
Samsung 980 1 TB NVMe M.2 SSD
Wifi & Bluetooth:
Ubit Intel AX200 PCIe Card
GPU:
Gigabyte GeForce GTX 1660 SUPER 6 GB
PSU:
Corsair CX 450 W
Image 1 of PC build.
Image 2 of PC build.
Image 3 of PC build.
Railguide render 1
Railguide render 2
Railguide render 3
Railguide render 4

Fly-away Rail Guides

UKSEDS National Rocketry Competition, Oct 2019 - Mar 2020

Designed two bespoke fly-away rail guides for two Imperial College SpaceSoc supersonic rockets, participating in the UKSEDS National Rocketry Competition 2020.

The fly-away rail guide securely attaches the rocket body to the aluminium rail and ensures a vertical take-off. They are designed to automatically detach from the rocket body without needing any external electronic feedback.



Project Members:

Project Daedalus

STEM Awards 2020, Dec 2019 - Feb 2020

Daedulus is a cockpit overhaul concept for 6th gen jet fighters. This concept provides improvements over current HOTAS systems in areas such as reaction time, programmability, functionality and intuitiveness.

Read more

The design features a calibrated cueing system to eye movements. This is done by the integrated iris trackers in the edges of the helmet visor. The reticle will be able to interact with:
-Onboard targeting systems such as air-to-air radar, FLIR and others to designate singular or multiple targets.
-The front panel of the aircraft, with the reticle acting as a “mouse cursor.”
-Controls on the throttle will simplify to two buttons, equivalent to left and right mouse buttons.

Navigation of options will be done through the sight-controlled reticle, and alternatively through voice commands. Similarly, the control stick will only have buttons for countermeasures, trigger and weapon release, with a multi-axis hat for trimming. These changes allow for pilots to achieve at least 80% of the aircraft’s combat and logistical functions without ever removing their hands from the throttle or control stick.

Project Members:

View Presentation Slides
helmet concept
Cockpit Concept
Helmet View concept
SpaceHack Concept 1
SpaceHack Concept 2
SpaceHack Concept 3
SpaceHack Concept 4
SpaceHack Group Photo
OneWeb Launch Event
OneWeb Control Room
OneWeb Satellite

S-P-I-D-E-R-M-A-N

SpaceHack by OneWeb, Nov 2019

2019's SpackHack hosted by OneWeb tasked us with finding a solution to the ever-growing low-Earth orbit space debris problem. As a group of 6 aeronautical and mechanical engineering students, we proposed implementing optimally positioned nodes in the current satellites network. Each node would house a booster module containing a deployable net mechanism to capture 'dead' satellites which have malfunctioned in the process of self-deorbiting at the end of their life-cycle.

Read more

A soft capture is ensured with our net proposal and is important to reduce the risk of debris being created from an impact. Once captured, the booster module could accelerate the dead satellite into an exaggerated elliptical orbit, forcing disintegration on re-entry at a much faster pace than current procedures.

It was a thoroughly enjoyable experience coming together as a team and was ecstatic to be awarded 1st place out of 40 teams for our idea. Furthermore, we were invited to OneWeb's head office in London for the official launch event of 34 of their satellites.

View Presentation Slides

Fluorescent Biorector

Imperial Horizons, Making & Prototyping Jan - Feb 2019

As part of the Imperial Horizons, Making and Prototyping course, the final project required a device to be manufactured to actively detect cell growth and count. This project proved to be particularly challenging for our team of three, which comprised of students with no bio-related backgrounds.

Read more

Our design involved the detection of fluorescent proteins produced by the GM bacteria culture used. A servo motor based pump system was implemented to introduce a chemical inducer into the sample to start this process.

A photodiode was used to measure the intensity of light from an LED after passing through the fluorescent sample. As the light intensity was proportional to the cell count, an Arduino code was composed to translate the voltage output of the photodiode to a meaningful cell count reading.

Project Members:

View Poster
Bioreactor Concept
Bioreactor Image 1
Bioreactor Image 2
Bioreactor Image 3

Artwork

Basically all of my drawings ever made.

Gra­phics

A collection of some posters, logos and diagrams I've made.

Exp­­erience

Past and current jobs.
  • Microsoft, UK

    Software Engineer Intern

    Worked within Microsft Search Assistance & Intelligence (MSAI) team developing within the Windows OS code base.

  • Rolls-Royce, UK

    Defence Aerospace Intern

    Second of two 6-month placements with Rolls-Royce Defence in Bristol.


    - Worked within the Fans & Compressors Systems Design team on RR's COLIBRI AI project. COLIBRI project.

  • Naval Automation & Control Engineering Intern

    First of two 6-month placements with Rolls-Royce Defence in Bristol.


    - Worked within the Artificial Chief Engineer (ACE) team, developing RR's new autonomous machinery control system for Naval vessels.

  • BP, UK

    Spring Engineering Intern

    The spring internship was modified to a fully virtual experience due to COVID-19.


    -Attended virtual seminars and learnt about BP’s upstream activities and strategies to meet future carbon emission goals.
    -Discussed technological innovations being implemented in BP to aid upstream operations such as AI-driven seabed robots and advanced seismic imaging.

  • Shell, UK

    Energy Transition Challenge

    Selected to participate in a live role-playing challenge, meant to simulate the global market transition to a lower-carbon future. Participants were assigned to the roles of industry, consumer, government, energy provider or NGO, with different associated criteria.

    -Obtained the highest profit amongst other participants as an energy provider by negotiating unit prices of either renewable or non-renewable energies while selling to industries or governments with green energy-based subsidies. Practised my negotiation skills and developed a deeper understanding of the challenges associated with the current energy transition.
    -Discussed the prospectives of a greener future with the manager of Shell UK's Energy Transition Programme.

  • Beckett Rankine, UK

    Insight and Work Shadow

    -Developed a basic understanding of marine civil engineering.
    -Gained insight into the Thames Tideway Scheme and the construction of cofferdams on Victoria embankment.
    -Designed initial phased development plans on CAD for an upcoming port project in Kamchatka Krai, Russia.
    -Understood the basics of functioning breakwaters and the different wave propagation prevention techniques used in ports.

  • BP Global Energy Trading, UK

    Supply & Trading Discovery Day

    One-day insight day programme organised by the Imperial Energy Society and BP's Energy Trading division.

    -Understood more about BP's supply and trading business through Q&A sessions with senior staff and by networking with previous graduates.
    -Participated in a crude-oil trading simulation game.
    -Received a trading floor tour at BP headquarters in London.

  • SAIL, India

    Insight

    -Received a two-day insight into the workings of an integrated steel plant.
    -Observed the functioning of different multi-disciplinary groups in large scale production lines.

  • Shell, Qatar

    Work Shadow

    -Experienced a full day of work shadowing and had the opportunity to spend time with a team of wells engineers.
    -Got provided with a basic insight into well engineering and the production of oil and gas.
    -Was shared an overview of the Pearl GTL plant at Ras Laffan, Qatar.
    -Completed mini assigned tasks based on the upstream sector.
    -Gained a valuable perspective of the economics involved in the petroleum industry from a wells economist.

Skills

Some of the things I've picked up.

Contact

Feel free to get in touch! Any suggestions are also very welcome.